
IF Authoring System Developer’s Guide
version 0.99, 2005-11-27

Peer Schaefer (peer@wolldingwacht.de)

mailto:peer@wolldingwacht.de


The Interactive Fiction Authoring System Developer’s Guide (version 0.99, 2005-11-27),
which is for programmers who want to create an authoring system for Interactive Fiction.
Copyright c© 2004, 2005 Peer Schaefer (peer@wolldingwacht.de).
The most recent version of this document is—without guarantee—available at
http://www.wolldingwacht.de/if/if-auth-dev-guide.html. In the same place
this document should available in alternative file-formats (PDF, Postscript PS,
Info, HTML, plain ASCII-text, DVI, and Texinfo-source). If you have problems
getting these files please contact me via peer@wolldingwacht.de or—if that fails—via
peerschaefer@gmx.net or peer.schaefer@hamburg.de.

Permission is granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections,
with the Front-Cover Texts being “A GNU Manual”, and with the Back-
Cover Texts as in (a) below. A copy of the license is included in the section
entitled “GNU Free Documentation License”. (a) The FSF’s Back-Cover Text
is: “You have freedom to copy and modify this GNU Manual, like GNU
software. Copies published by the Free Software Foundation raise funds for
GNU development.”

mailto:peer@wolldingwacht.de
http://www.wolldingwacht.de/if/if-auth-dev-guide.html
mailto:peer@wolldingwacht.de
mailto:peerschaefer@gmx.net
mailto:peer.schaefer@hamburg.de


i

Table of Contents

1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 The Advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 The Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.1 Set up your goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Learn what’s around . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.3 Design a language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4 Develop a compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5 Develop a library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.5.1 Develop a parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.5.2 Develop a world model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5.3 Think about customizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.6 Write a game or two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 Write manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8 Beta test your work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.9 Publish and monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.10 Check for success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.11 Feed back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Some final notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Getting in touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Appendix A Copying This Manual . . . . . . . . . . . . . . . . . . . 11
A.1 GNU Free Documentation License . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A.1.1 ADDENDUM: How to use this License for your documents . . . . . . . . . . . 17

Appendix B Table of links . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



Chapter 1: Preface 1

1 Preface

This document is not for authors of Interactive Fiction who want to use an authoring
system to create Interactive Fiction; this document is for programmers who want to create
an authoring system for Interactive Fiction—that is a system which allows authors of
Interactive Fiction (a.k.a. “Text Adventures”) to write Interactive Fiction. In other
words: this document is about writing a system like Inform1 or TADS2 (so, we’re on a
pretty abstract meta-level here). I will try to lay down the most important aspects that
the developer of an authoring-system should consider, and the most important pitfalls she
should avoid.

So, what qualifies the author of this document to write something substantial about
the matter? Well, maybe not very much. Long time ago I wrote a very simple C compiler
for the Amiga 500 and a cross-platform assembler for the i386 PC (generating code for
the C-64, C-Plus/4 and Atari VCS 2600), and in the course of these projects I learned a
little bit about compiler building. Or at least I think so. And I am playing Interactive
Fiction for some years now. Some time in the past—before I learned that Inform and
TADS are out there—I tried to write my own authoring system for Interactive Fiction.
It took me about three or four months to realise that I had completely failed—and one
month more to find enough courage to finally give up. In fact, I only just finished the
user-interface and had no clue how to build a parser. In the end I learned much about
the difficulties you step into if you persue such bold goal. Later I made myself familiar
with Inform and TADS and learned a little bit by studying their inner functionality, with
a focus on Inform. Currently I’m writing silly tiny adventures in Inform, but my small
sparetime and my bad english prevent me from finishing anything worth publishing.

This document provides an advice and some extensive guidelines. The advice tries to
prevent you from wasting your time. And the guidelines try to help you doing the job
right. The target group of this document is propably very small, but maybe someone finds
this document useful or instrumental in saving him much time.

Thanks to Roger Firth, Andrew Plotkin, Samwyse and Dan Shiovitz for their kind
feedback and suggestions. I have taken freely from their replies. All errors and opin-
ions remain—of course—my own. Thanks to Graham Nelson for Inform and Michael J.
Roberts for TADS. And of course thanks to Will Crowther, Don Woods, Dave Lebling,
Tim Anderson, Mark Blank and all the friendly girls and boys at rec.arts.int-fiction3.

I am always happy about feedback, both cheers and criticism (including
corrections of my bad english) or just saying hello, so please feel free to contact
me via peer@wolldingwacht.de or—if that fails—via peerschaefer@gmx.net or
peer.schaefer@hamburg.de.

1 Inform: The Inform fiction compiler by Graham Nelson:
http://www.inform-fiction.org/

http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6.html

ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/
2 TADS: The Text Adventure Development System by Michael J. Roberts:
http://www.tads.org/

http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads2.html

http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3.html

ftp://ftp.ifarchive.org/if-archive/programming/tads2/

ftp://ftp.ifarchive.org/if-archive/programming/tads3/
3 The newsgroup about writing (authoring) Interactive Fiction:

rec.arts.int-fiction
http://groups.google.de/groups?hl=en&lr=&ie=UTF-8&group=rec.arts.int-fiction

news:rec.arts.int-fiction
mailto:peer@wolldingwacht.de
mailto:peerschaefer@gmx.net
mailto:peer.schaefer@hamburg.de
http://www.inform-fiction.org/
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6.html
ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/
http://www.tads.org/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads2.html
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3.html
ftp://ftp.ifarchive.org/if-archive/programming/tads2/
ftp://ftp.ifarchive.org/if-archive/programming/tads3/
news:rec.arts.int-fiction
http://groups.google.de/groups?hl=en&lr=&ie=UTF-8&group=rec.arts.int-fiction


Chapter 2: The Advice 2

2 The Advice

So, you want to write an Interactive Fiction authoring system? Ok, here’s my advice:
don’t do it. At least, think twice about it. What’s wrong with Inform or TADS? In
what respect would your system be better? And is your point important enough to justify
the effort? And after you’ve thought twice, think twice again. Inform and TADS are
around and should suit your needs. Both may have some minor or major flaws in design
and implementation. They are not perfect. But they are pretty good and almost bug-
free. They have been intensively tested. They are well documented. They are very flexible.
They have been ported to many different platforms. They are widely spread, well discussed
and well known, so there is a good chance that some guy at rec.arts.int-fiction1 can help
you with your programming problem. Many add-ons or contributions are available for
both. Even if your brand new system would be twice as good as Inform or TADS, both
Inform and TADS would still be ten times better documented, a hundred times better
discussed and a thousand times better tested. So it’s not only a matter of quality. Your
system should provide some really new and cool features, or it would be totally pointless.

And if you have thought twice and then twice again, and you are still willing to create
your own Interactive Fiction authoring system, I have another advice for you: Make sure
that you have a huge amount of sparetime. You can not underestimate the time this
project will take. If you have a job and a girlfriend2, cancel both (no, not really—that
was a joke).

And one more advice: don’t think that anybody will pay for your product. No exact
numbers are known, but there are probably only a few tenthousand people worldwide who
play Interactive Fiction, and there are only a hundred people or so worldwide who write
Interactive Fiction. Since Inform and TADS are free and nobody gets money for writing
Interactive Fiction,3 nobody will pay for an authoring tool.

I would also encourage reading the article “So you want to write a text adventuring
authoring system...” by Alan Conroy in the XYZZY magazine issue #144. It is perhaps
not strikingly brilliant but it is—as far as I know—the only report about developing an
IF authoring tool that was written by someone who really did it (and wasn’t just talking
about it, like myself).

1 The newsgroup about writing (authoring) Interactive Fiction:
rec.arts.int-fiction
http://groups.google.de/groups?hl=en&lr=&ie=UTF-8&group=rec.arts.int-fiction

2 Or a boyfriend.
3 Peter Nepstad may be the great exception nowadays, since his “1893 - A Worlds Fair Mystery” scored

some economic success. For details take a look at http://www.illuminatedlantern.com/1893. By
the way: Peter Nepstad used the TADS authoring tool by Michael J. Roberts for creating “1893”.

4 “So you want to write a text adventuring authoring system...”, by Alan Conroy, in XYZZY magazine
issue #14:
http://www.xyzzynews.com/xyzzy.14i.html

http://www.ifarchive.org/if-archive/magazines/XYZZYnews/XYZZY14.PDF

news:rec.arts.int-fiction
news:rec.arts.int-fiction
http://groups.google.de/groups?hl=en&lr=&ie=UTF-8&group=rec.arts.int-fiction
http://www.illuminatedlantern.com/1893
http://www.xyzzynews.com/xyzzy.14i.html
http://www.ifarchive.org/if-archive/magazines/XYZZYnews/XYZZY14.PDF


Chapter 3: The Guidelines 3

3 The Guidelines

3.1 Set up your goals

Think about what you want. What’s wrong with Inform or TADS? What’s missing or
what’s unsatisfying? Are the flaws important enough to write a complete new system?
Maybe you could contribute to an existing system, either by providing a library add-on
or by providing a patch to the compiler. Be careful and watch your motives. If you think
that Inform or TADS are simply not elegant enough, and if that’s the only point, than you
are both right and wrong: right regarding the lack of perfect elegance in these systems,
but wrong in thinking that this is a good reason to create a new system. It’s not.

Instead make a list of all the reasons you have to write your own system. Put the list
away for two weeks, then pull it out and read it carefully. Are you still convinced by your
own reasons?

3.2 Learn what’s around

Make yourself familiar with
• Inform and TADS,
• Glulx1,
• Glk2.

Read the manuals of Inform and TADS and learn each language. Write at least one
small game in each language, e.g. a simple three-rooms-game with a small puzzle. Take a
look at the many different implementations of the sample game Cloak Of Darkness3. Read
the documentation for Inform and TADS, especially the technical parts and the chapters
about the library and the world-model. Take a look at the sourcecode of the compiler and
of the library-files.

3.3 Design a language

Design a language for writing Interactive Fiction. There are—at least—two very different
paths you can take:
a. A language that is oriented towards the more “traditional” programming languages

like C, C++, Java, Perl, Pascal, Python, BASIC or something similar. This is the
path Inform and TADS have taken, both of them beeing more or less C/C++-like.

b. A “language” that has a totally different approach. Possible examples could be:
• A graphical, mouse-driven language of the kind “click-together-your-adventure-

without-typing-a-single-word”, e.g. by creating a graphically displayed “web of
rules” with the mouse.

• A “language” that uses a matrix-oriented database that you can fill with data
and informations (like an Excel sheet or a form).

1 Glulx: The Glulx virtual machine (standard) by Andrew Plotkin:
http://www.eblong.com/zarf/glulx/

http://www.ifarchive.org/indexes/if-archiveXprogrammingXglulx.html

ftp://ftp.ifarchive.org/if-archive/programming/glulx/
2 Glk: Andrew Plotkin’s Glk API, which provides a portable interface for text adventure systems:
http://www.eblong.com/zarf/glk/

http://www.ifarchive.org/indexes/if-archiveXprogrammingXglk.html

ftp://ftp.ifarchive.org/if-archive/programming/glk/
3 The Cloak Of Darkness sample adventure, written in many different languages:
http://www.firthworks.com/roger/cloak/

http://www.eblong.com/zarf/glulx/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXglulx.html
ftp://ftp.ifarchive.org/if-archive/programming/glulx/
http://www.eblong.com/zarf/glk/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXglk.html
ftp://ftp.ifarchive.org/if-archive/programming/glk/
http://www.firthworks.com/roger/cloak/


Chapter 3: The Guidelines 4

• A HTML-like descriptive language (maybe an XML4 variant) that allows you to
design an adventure in much the same way you would design a document. There
are already two authoring systems that follow that path:
• AAS (Advanced Authoring System) by Roddy Ramieson

(http://www.aas-ta.com);
• Aiee! (An Interactive Environment Engine) by Mark Hughes

(http://kuoi.asui.uidaho.edu/~kamikaze/Aiee/).

Both are written in Java, which is pretty appropriate for systems using XML and
allows “online playing” with your webbrowser.

• A language that implements a kind of “ladder-logic”5.

If you take option (b), you are very much on your own. Such radically new approaches
have the advantage that your system doesn’t have to compete directly with Inform or
TADS, because it’s totally different and has other design-goals and a different target
group resp. audience. But it also has at least two drawbacks: first, there are no or at least
very few prototypes or examples you can orient yourself; and secound, there is—from
my point of view—nothing as flexible as a “traditional” programming language; every
other approach will almost sure be more rigid and more restricted, resulting in somehow
“limited” games. On the other hand, a symbolic approach or a graphical interface would
be less intimidating to non-programmers; that could open up a complete new “market”
and would make the authoring of Interactive Fiction possible for a completely new group
of people.

If you take option (a), your language should provide some very nice and cool “gim-
micks” that are real improvements compared to Inform and TADS. It seems that Inform
and TADS have probably saturated the market for C/C++-like languages for Interactive
Fiction; it’s hard to imagine another one in the same image having much to offer, so your
“gimmicks” better have to be really cool. Possible “gimmicks” would be e.g.:
• linking in code written in another language (e.g. C/C++, Inform, TADS, Lisp, Pascal,

etc.);
• a radically different world-model (e.g. a 3D simulationist (VR) approach where the

author must provide X-Y-Z-coordinates and physical informations for each object);
• an Artificial Intelligence (AI) facility for NPCs (but in the end that could also be ac-

complished by writing a library-contribution for Inform or TADS and doesn’t require
a complete new system).

Your best bet for success is probably to find something that neither Inform nor TADS
does very well, and make it so easy that everyone will slap their heads and say, “Why
didn’t we think of that?”.

In the process of language-design itself you should choose an existing language as a
prototype. Start from that point and “modify” the language whenever and wherever
required, so that it in the end suits your needs. As hinted above, I would recommend
C/C++ as a starting point, because it’s a generic all-purpose language, powerful, widely
used and almost a standard for programming. Other fair choices would be Java, Pascal or
a standardized object-oriented variant of BASIC. I would discourage scripting languages
(e.g. Perl, Python) because they were designed for different purposes and wouldn’t fit very
well. I would also discourage “ancient”, seldom used or special purpose languages like Lisp,

4 XML, the Extensible Markup Language:
http://www.w3.org/XML/

5 “Ladder-logic”:
http://en.wikipedia.org/wiki/Ladder_logic

http://www.google.com/search?hl=en&q=ladder+logic&btnG=Google+Search

http://www.aas-ta.com
http://kuoi.asui.uidaho.edu/~kamikaze/Aiee/
http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Ladder_logic
http://www.google.com/search?hl=en&q=ladder+logic&btnG=Google+Search


Chapter 3: The Guidelines 5

Fortran, Forth, Logo, etc. unless you have a very good reason, because they lack some of
the more powerful constructs and concepts, or they are difficult to learn because they are
so different from what people nowadays are used to and comfortable with. Almost anybody
with some programming experience knows C/C++, so learning a C/C++-like language will
be very easy for most people; using Lisp, Fortran or Logo will force 90% of your audience
to learn a completely new language from scratch, which wouldn’t promote the success of
your system. On the other hand, a complete new approach—e.g. the use of Lisp or Logo—
could result in complete new solutions to old problems. Maybe that justifies the trouble
and effort necessary for learning a new language (or re-learning an “ancient” one), but
the surplus has better to be large—or your approach will fail. Or maybe your “strange”
choice drives off 90% of your adience, but the remaining 10% could be people that were
not attracted by all the other C/C++-like languages (e.g. newbies oder professionals with
different preferences or just another attitude).

If you have chosen a language, customize and modify it with your goal —a language
for implementing Interactive Fiction—in mind. Here are some suggestions:

• Interactive Fiction is all about text. Make (dynamic) strings a native data/variable-
type of your language.

• Interactive Fiction is all about objects. Make the creation, movement and destruc-
tion/removement of objects as simple as possible. Make the creation and inheritance
of classes as simple as possible. Make the management of the object tree as simple as
possible. Design special commands, e.g. a special loop construct that loops over all
child-objects (see Informs objectloop).

• Interactive Fiction is all about “states” like on/off. Make two-state 1-bit data
(boolean) a native data/variable-type.

• Create a simple and transparent syntax for actions or processes that are typical for
Interactive Fiction. For example, it’s typical for Interactive Fiction to write some text
to the screen and then prompt for a new player input. In Inform there is a special
syntax for this: you can simply write the text in quotes and that’s it. A simple quoted
string (without command or function-call) means “write this string, append a new
line/line feed, and then return the value TRUE to the parser”. That’s a damn clever
feature.

• Make the language slim. Strip off everything that’s not needed in Interactive Fiction.
For example, most mathematical functions or file-handling routines are not needed.
That will ease your pain and will reduce the number of bugs (in my opinion the
number of bugs grows exponentially with the growth of the code ;-).

• Make all basic operations part of the language itself, don’t provide them as libraries.
For example, in standard C all I/O-functions are not part of the language itself but
part of the standard library STDIO.H. That’s ok for an all-purpose-language like
C/C++, but not ok for a specialized language like yours. Make life simple for you and
for all programmers that will later use your language.

I would strongly recommend to keep all I/O-functions Glk6-compliant. Glk is almost a
standard nowadays (or should be), it is well designed, it keeps you from making mistakes
or forgetting something, it is free and it makes it easier to write interpreters for your
system or to port it to other machines and operating systems.

6 Glk: Andrew Plotkin’s Glk API, which provides a portable interface for text adventure systems:
http://www.eblong.com/zarf/glk/

http://www.ifarchive.org/indexes/if-archiveXprogrammingXglk.html

ftp://ftp.ifarchive.org/if-archive/programming/glk/

http://www.eblong.com/zarf/glk/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXglk.html
ftp://ftp.ifarchive.org/if-archive/programming/glk/


Chapter 3: The Guidelines 6

3.4 Develop a compiler

Develop a compiler for the language that you have designed according to Section 3.3
[Design a language], page 3.

Write the compiler in a widely used and standardized language that is available for
many plaforms, at least for Windows, MacOS-X, and Linux/Unix. Write portable, good
structured, well documented code. I suggest plain standard C (make sure that it can be
compiled with gcc7). Using C would also allow you to use the Bison8 tool, which can ease
the pains of compiler-building by automatically writing a code-parser in plain portable C
for you that parses your self-designed source language. Other fair choices are C++, Java or
Perl. I would discourage the use of any language that is not available for free (like Delphi)
or not standardized (like BASIC).

The compiler should generate platform-independent code. Glulx runtime-code would
be a good choice, because it’s specifically designed for Interactive Fiction, well documented,
and free (and interpreters are available for several platforms). Another fair choice would be
runtime-code for the Java-VM9 or for the T3 Virtual Machine10. Other possible choices
would include Java sourcecode, or Z-CODE11 (V5, V6 or V8). C/C++-sourcecode as
output might be acceptable, but keep in mind that many players of text adventures haven’t
used a compiler in their lives (at least make sure that the code compiles with gcc), and
distributing compiled binaries would make the game platform-dependend. Poor choices
would be assembler/machine code, BASIC, Fortran, Forth, and other languages that are
not portable, not standardized, seldom used, less powerful, out of date or not available for
free. And there is really no point in designing a new runtime-format, unless you have a
very good reason.

3.5 Develop a library

Write some library files in your language (see Section 3.3 [Design a language], page 3)
for use with your compiler (see Section 3.4 [Develop a compiler], page 6) that can simply
by included in the author’s sourcecode via #include or a similar command. Write clean,
nicely formatted, well commented code. The library should provide two things:
• a parser,
• a world-model.

Both things are detailed below.

3.5.1 Develop a parser

The parser fetches the textual input from the player and translates it into a computer-
readable form. For example, the parser should translate a player’s command like "OPEN
THE WOODEN DOOR WITH THE GOLDEN KEY" into a data-structure that contains the following
elements: the internal ID for the OPEN-action, the internal ID of the WOODEN DOOR object
and the internal ID of the GOLDEN KEY object.

7 gcc: The GNU C/C++ compiler:
http://www.gnu.org/software/gcc/

http://www.delorie.com/djgpp/
8 The GNU Bison parser generator:
http://www.gnu.org/software/bison/

9 The Java(TM) Virtual Machine Specification:
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

10 The Specification of the T3 Virtual Machine:
http://www.tads.org/t3spec/intro.htm

11 Z-CODE:
http://www.ifarchive.org/indexes/if-archiveXinfocomXinterpretersXspecification.html

ftp://ftp.ifarchive.org/if-archive/infocom/interpreters/specification

http://www.gnu.org/software/gcc/
http://www.delorie.com/djgpp/
http://www.gnu.org/software/bison/
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://www.tads.org/t3spec/intro.htm
http://www.ifarchive.org/indexes/if-archiveXinfocomXinterpretersXspecification.html
ftp://ftp.ifarchive.org/if-archive/infocom/interpreters/specification


Chapter 3: The Guidelines 7

The parser should also handle placeholders like "ALL" or "IT" or "EVERYTHING", so
that commands like "TAKE IT" or "TAKE EVERYTHING FROM THE TABLE EXCEPT THE BRASS
LANTERN" are solved and the parser passes the right IDs of the right objects to the game.
Maybe the parser has to colaborate with the world model (see Section 3.5.2 [Develop a
world model], page 7 below) to handle this, or the entire task has to be left to the world
model; but these are intricate questions you have to make up by yourself.

See p. 1 and chapter IV of the Inform Designer’s Manual, 4th edition12.

3.5.2 Develop a world model

The world-model should provide some basic rules, for example that you can only see
something when there is light, that some things (e.g. a bag) can contain other things, that
you can’t see or touch things that are inside other things (except when the container is
transparent or open) etc.

The world-model should provide some default-behavior for all standard actions. For
example, commands like TAKE or DROP should by default work as you might expect and
should handle concepts like containment (inclusion inside of other things) and the “scope”
(what you can see, touch and reach).

See p. 1 and chapter III of the Inform Designer’s Manual, 4th edition.

3.5.3 Think about customizing

Keep in mind that the biggest problem that an author of Interactive Fiction is confronted
with is customizing the game, which means overriding, changing, and redesigning library
behavior. I’m not just talking about “hacking the library” here. As Andrew Plotkin
once said on rec.arts.int-fiction, every line of code in a piece of Interactive Fiction exists
to customize the library—even the simplest object description is a customization of the
default “You see nothing special”-response. So your library should provide many entry
points on many levels to allow the author to customize the behavior of the library from
within in the code of his game, without having to modify the library files themselves.
Freedom is good, and options are good. The author should have the power to override
pretty much everything, as and when he feels like it. Of course, not overwhelming the
author with a forest of infinite detail is also good. Thus, the library should provide
factory-equipped default values for (almost) everything, so that the author only has to
mess around with that what is special about the particular player input, line of grammar,
verb, action, room, object or NPC.

A typical entry point should be a variable that is defined in and provided by the library
(parser or world-model), which contains a pointer to a function/routine. The default value
of the variable should be 0 (NULL), signaling the library that the default-behavior should
apply. But if the author provides his own function/routine and lets the entry-point-variable
point at it, the library calls that routine. If the routine returns 0 as a return value, the
default-behavior still applies, but if the routine returns some other value the library knows
that the routine has handled the matter, and the default-behavior is suppressed.

The library should provide entry points at as many stages and levels as possible (pars-
ing level, grammar level, scope determination, action-resolving, action-verification, object
reaction, post-action, etc.). Examples for good entry points can be found in the Inform

12 The Inform Designer’s Manual, 4th edition, by Graham Nelson:
ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_

4.pdf

http://www.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_

4.pdf

news:rec.arts.int-fiction
ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_4.pdf
ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_4.pdf
http://www.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_4.pdf
http://www.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_4.pdf


Chapter 3: The Guidelines 8

Designer’s Manual at pages 412ff. and 431ff., and in the appropriate sections of the TADS
Manuals13. But—of course—there is always room for more...

3.6 Write a game or two

Write a piece of Interactive Fiction in your language, using your compiler and your library
files.

Maybe it’s a good idea to start with a small and simple game (two or three rooms
with two simple puzzles, some furniture and at least one nice gimmick, e.g. a machine
that does something). During the process of writing the game you will discover bugs in
your compiler and in the library files. Correct them. But you will also notice some things
about your language that are inconvinient or missing. Improve your language (and—in
consequence—your compiler and/or library files).

Then write a large game (or let somebody write a large game and keep in touch with him
closely). Some game that requires several hours to play through. For example, Inform was
published together with the superb Curses14, and that was crucial for the success of Inform
because Curses proved that Inform can really produce a really large game of some quality.
Writing your large game you will propably run into difficulties. Improve your language,
your compiler, your library files. Maybe you will run into serious difficulties. Well, take a
deep breath, go ahead and redesign your system—parser, world-model, common library,
language syntax—, and try again.

3.7 Write manuals

Write detailed and accurate specifications (reference manuals) for your language (see Sec-
tion 3.3 [Design a language], page 3), your compiler (see Section 3.4 [Develop a compiler],
page 6) and your library-files (see Section 3.5 [Develop a library], page 6).

Write an easy-to-read tutorial that introduces a new programmer with some basic
programming knowledge to your language, the compiler and the library files.

Provide the reference manuals and the tutorial at least in PDF, Postscript (PS) and
HTML-format. Maybe it’s a good idea to use the Texinfo15-standard that can easily
produce nicely formated PDF, PS and HTML output from one document-source. Using
DocBook16 is also an option.

3.8 Beta test your work

Don’t publish your work now. Beta test it first. Inform two or three competent girls or
boys from rec.arts.int-fiction about your project and ask them for a first beta-test. If they
are interested, give them a FTP or HTML download location where your work is available
for download. Let them test your compiler, your library-files and your manuals. Listen to
them. Take them serious. Take their advices. It’s much, much work, it’s boring and it’s
a nuisance. But it’s neccesary.

13 The TADS Manuals, by Michael J. Roberts and Eric Eve:
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads2Xmanuals.html

http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3Xmanuals.html
14 Curses, by Graham Nelson.

http://www.ifarchive.org/indexes/if-archiveXgamesXzcodeXcurses.z5

ftp://ftp.ifarchive.org/if-archive/games/zcode/curses.z5
15 Texinfo: The GNU Texinfo system for creating documentations:

http://texinfo.org/

http://www.gnu.org/software/texinfo/
16 DocBook: an XML/SGML vocabulary particularly well suited to books and papers about computer

hardware and software:
http://www.oasis-open.org/docbook/

news:rec.arts.int-fiction
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads2Xmanuals.html
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3Xmanuals.html
http://www.ifarchive.org/indexes/if-archiveXgamesXzcodeXcurses.z5
ftp://ftp.ifarchive.org/if-archive/games/zcode/curses.z5
http://texinfo.org/
http://www.gnu.org/software/texinfo/
http://www.oasis-open.org/docbook/


Chapter 3: The Guidelines 9

3.9 Publish and monitor

Upload your system to the IF-archive17 and announce it at rec.arts.int-fiction. Don’t fall
into any illusions; half of the work is still ahead you.

Prepare for a flame-war. The use of computer languages or development systems is
a religious question, and there are many priests out there. Don’t care about unpolite,
unfriendly or unspecific criticism (“Your system sucks!”). But do care about criticism
that points at specific aspects or makes specific suggestions (these should be the majority,
since rec.arts.int-fiction is usually a friendly place with intelligent and helpful people).
• Make a list of all bugs. Monitor rec.arts.int-fiction and your mailbox for several weeks

and update the bug-list constantly.
• Make a list of all improvements that (a) you by yourself think would be good or (b)

were suggested in the public discussion of your work. Wait some time and update the
wish-list constantly.

• Take the bug-list and the wish-list and make a ranking for each list, with the most
urgent/important bugs/wishes first. Work your way through both ranking-lists, start-
ing at the top with the most urgent/important bugs/wishes. Don’t forget to adjust
the manuals if you change something in your authoring system.

• During your way through the bug/wish-list you should publish every three or four
weeks or so a new version of your work, by uploading it to the IF-archive and announc-
ing it at rec.arts.int-fiction. Don’t publish too often–give your beta-testers enough
time to test your suite, to discuss it, and to respond.

3.10 Check for success

Wait a few months. Monitor rec.arts.int-fiction. Monitor your mailbox. Does your au-
thoring system have any audience? Is there a circle of at least a few users that use your
system? If yes, keep on working on your system.

If nobody uses your system, if you are the only one who writes postings to
rec.arts.int-fiction about your system, you should stop working now. You have wasted
your time. Sorry, bad luck. Maybe your system is not good enough. Maybe your system
has some fundamental flaws. Maybe your system is pretty good but doesn’t provide any
substantial improvements in comparison to Inform or TADS. Well, never mind. Hell,
there is more to life than programming an Interactive Fiction authoring system. Keep
your mood up and think about all the programming experience that you have made.
Go fishing. Get a girlfriend18. And, of course—don’t loose your interest in Interactive
Fiction.

3.11 Feed back

Send me an e-mail and tell me about your experiences and what you think about these
guidelines. Correct my bad english. Thank you.

17 IF-archive: The central repository for software related to Interactive Fiction:
ftp://ftp.if-archive.org/

http://www.ifarchive.org/
18 Or a boyfriend (I’m repeating).

news:rec.arts.int-fiction
news:rec.arts.int-fiction
news:rec.arts.int-fiction
news:rec.arts.int-fiction
news:rec.arts.int-fiction
news:rec.arts.int-fiction
mailto:peer@wolldingwacht.de
ftp://ftp.if-archive.org/
http://www.ifarchive.org/


Chapter 4: Some final notes 10

4 Some final notes

4.1 Conclusion

I think we can close with some conclusions:
• Avoid delusions. Writing a system that is greater, better, more elegant and more

powerful than any existing system is propably a little bit over the top (in other
words: overkill).

• Find a niche. Create a gimmick. Instead, make your system special. Make something
nobody has. A very special user-interface. A cool new object-model. I don’t know.
Something that kicks.

• Standards matter. Use existing standards (for example Glk or Glulx) whenever and
wherever possible.

• Portability matters. Use portable languages, libraries and techniques. Don’t lock
yourself to a specific platform. Portability to MacOS-X, Unix/Linux and Windows
is the subsistence level; “generic” programming (portability to almost anything that
adheres to a minimum set of standards) is preferable.

• In general: Don’t invent the wheel a second time. Use existing libraries, formats,
languages etc. whenever and wherever possible. Think about using Glk, Glulx, and
such stuff.

• Don’t underestimate it. Make sure you have enough resources (that is, enough spare-
time, IF-experience, and programming-skills).

Reading this guide one might get the impression that the author wanted to prevent
any new authoring systems from emerging. You couldn’t be more wrong. In fact, I would
very like to see some new stuff coming up. But I hate wasting time.

4.2 Credits

Thanks to Roger Firth, Andrew Plotkin, Samwyse and Dan Shiovitz for their kind feedback
and suggestions. I have taken freely from their replies. All errors and opinions remain—of
course—my own. Thanks to Graham Nelson for Inform and Michael J. Roberts for TADS.
And of course thanks to Will Crowther, Don Woods, Dave Lebling, Tim Anderson, Mark
Blank and all the friendly girls and boys at rec.arts.int-fiction.

4.3 Getting in touch

The most recent version of this document is—without guarantee—available at
http://www.wolldingwacht.de/if/if-auth-dev-guide.html. In the same place
this document should available in alternative file-formats (PDF, Postscript PS, Info,
HTML, plain ASCII-text, DVI, and Texinfo-source). If you have problems getting
these files please contact me via peer@wolldingwacht.de or—if that fails—via
peerschaefer@gmx.net or peer.schaefer@hamburg.de.

news:rec.arts.int-fiction
http://www.wolldingwacht.de/if/if-auth-dev-guide.html
mailto:peer@wolldingwacht.de
mailto:peerschaefer@gmx.net
mailto:peer.schaefer@hamburg.de


Appendix A: Copying This Manual 11

Appendix A Copying This Manual

A.1 GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.
This License is a kind of “copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General
Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited
to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee,
and is addressed as “you”. You accept the license if you copy, modify or distribute
the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Docu-
ment that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains
nothing that could fall directly within that overall subject. (Thus, if the Document is
in part a textbook of mathematics, a Secondary Section may not explain any mathe-
matics.) The relationship could be a matter of historical connection with the subject
or with related matters, or of legal, commercial, philosophical, ethical or political
position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero



Appendix A: Copying This Manual 12

Invariant Sections. If the Document does not identify any Invariant Sections then
there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released
under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover
Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable
for revising the document straightforwardly with generic text editors or (for images
composed of pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy
made in an otherwise Transparent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount
of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ
in another language. (Here XYZ stands for a specific section name mentioned below,
such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not
use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange
for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.



Appendix A: Copying This Manual 13

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each
Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-
standard network protocols a complete Transparent copy of the Document, free of
added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide
you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses
a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it
has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.



Appendix A: Copying This Manual 14

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an

item stating at least the title, year, new authors, and publisher of the Modified
Version as given on the Title Page. If there is no section Entitled “History” in
the Document, create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed
in the “History” section. You may omit a network location for a work that
was published at least four years before the Document itself, or if the original
publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the
Title of the section, and preserve in the section all the substance and tone of
each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may
at your option designate some or all of these sections as invariant. To do this, add
their titles to the list of Invariant Sections in the Modified Version’s license notice.
These titles must be distinct from any other section titles.
You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage
of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in
the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you
or by arrangement made by the same entity you are acting on behalf of, you may
not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.



Appendix A: Copying This Manual 15

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such
section unique by adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections in the license notice
of the combined work.
In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Docu-
ment’s Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.



Appendix A: Copying This Manual 16

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such parties remain in
full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

http://www.gnu.org/copyleft/


Appendix A: Copying This Manual 17

A.1.1 ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.2

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releas-
ing these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.



Appendix B: Table of links 18

Appendix B Table of links

1. Inform: The Inform fiction compiler by Graham Nelson:
http://www.inform-fiction.org/
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6.html

ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/

2. TADS: The Text Adventure Development System by Michael J. Roberts:
http://www.tads.org/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads2.html
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3.html
ftp://ftp.ifarchive.org/if-archive/programming/tads2/
ftp://ftp.ifarchive.org/if-archive/programming/tads3/

3. rec.arts.int-fiction: The newsgroup about writing (authoring) Interactive Fiction:
rec.arts.int-fiction
http://groups.google.de/groups?hl=en&lr=&ie=UTF-8&group=rec.arts.int-fiction

4. "So you want to write a text adventuring authoring system...", by Alan Conroy, in
XYZZY magazine #14:
http://www.xyzzynews.com/xyzzy.14i.html
http://www.ifarchive.org/if-archive/magazines/XYZZYnews/XYZZY14.PDF

5. Glulx: The Glulx virtual machine (standard) by Andrew Plotkin:
http://www.eblong.com/zarf/glulx/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXglulx.html
ftp://ftp.ifarchive.org/if-archive/programming/glulx/

6. Glk: Andrew Plotkin’s Glk API, which provides a portable interface for text adventure
systems:
http://www.eblong.com/zarf/glk/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXglk.html
ftp://ftp.ifarchive.org/if-archive/programming/glk/

7. The Cloak Of Darkness sample adventure:
http://www.firthworks.com/roger/cloak/

8. XML, the Extensible Markup Language:
http://www.w3.org/XML/

9. "Ladder-logic":
http://en.wikipedia.org/wiki/Ladder_logic
http://www.google.com/search?hl=en&q=ladder+logic&btnG=Google+Search

10. gcc: The GNU C/C++ compiler:
http://www.gnu.org/software/gcc/
http://www.delorie.com/djgpp/

http://www.inform-fiction.org/
http://www.ifarchive.org/indexes/if-archiveXinfocomXcompilersXinform6.html
ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/
http://www.tads.org/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads2.html
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3.html
ftp://ftp.ifarchive.org/if-archive/programming/tads2/
ftp://ftp.ifarchive.org/if-archive/programming/tads3/
news:rec.arts.int-fiction
http://groups.google.de/groups?hl=en&lr=&ie=UTF-8&group=rec.arts.int-fiction
http://www.xyzzynews.com/xyzzy.14i.html
http://www.ifarchive.org/if-archive/magazines/XYZZYnews/XYZZY14.PDF
http://www.eblong.com/zarf/glulx/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXglulx.html
ftp://ftp.ifarchive.org/if-archive/programming/glulx/
http://www.eblong.com/zarf/glk/
http://www.ifarchive.org/indexes/if-archiveXprogrammingXglk.html
ftp://ftp.ifarchive.org/if-archive/programming/glk/
http://www.firthworks.com/roger/cloak/
http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Ladder_logic
http://www.google.com/search?hl=en&q=ladder+logic&btnG=Google+Search
http://www.gnu.org/software/gcc/
http://www.delorie.com/djgpp/


Appendix B: Table of links 19

11. The GNU Bison parser generator:
http://www.gnu.org/software/bison/

12. The Java(TM) Virtual Machine Specification:
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html

13. The Specification of the T3 Virtual Machine:
http://www.tads.org/t3spec/intro.htm

14. Z-CODE:
http://www.ifarchive.org/indexes/if-archiveXinfocomXinterpretersXspecification.html

ftp://ftp.ifarchive.org/if-archive/infocom/interpreters/specification

15. The Inform Designer’s Manual, 4th edition, by Graham Nelson:
ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_
manual_4.pdf
http://www.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_
manual_4.pdf

16. The TADS Manuals, by Michael J. Roberts and Eric Eve:
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads2Xmanuals.html
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3Xmanuals.html

17. Curses, by Graham Nelson.
http://www.ifarchive.org/indexes/if-archiveXgamesXzcodeXcurses.z5
ftp://ftp.ifarchive.org/if-archive/games/zcode/curses.z5

18. Texinfo: The GNU Texinfo system for creating documentations:
http://texinfo.org/
http://www.gnu.org/software/texinfo/

19. IF-archive: The central repository for software related to Interactive Fiction:
ftp://ftp.if-archive.org/
http://www.ifarchive.org/

http://www.gnu.org/software/bison/
http://java.sun.com/docs/books/vmspec/2nd-edition/html/VMSpecTOC.doc.html
http://www.tads.org/t3spec/intro.htm
http://www.ifarchive.org/indexes/if-archiveXinfocomXinterpretersXspecification.html
ftp://ftp.ifarchive.org/if-archive/infocom/interpreters/specification
ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_4.pdf
ftp://ftp.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_4.pdf
http://www.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_4.pdf
http://www.ifarchive.org/if-archive/infocom/compilers/inform6/manuals/designers_manual_4.pdf
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads2Xmanuals.html http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3Xmanuals.html
http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads2Xmanuals.html http://www.ifarchive.org/indexes/if-archiveXprogrammingXtads3Xmanuals.html
http://www.ifarchive.org/indexes/if-archiveXgamesXzcodeXcurses.z5
ftp://ftp.ifarchive.org/if-archive/games/zcode/curses.z5
http://texinfo.org/
http://www.gnu.org/software/texinfo/
ftp://ftp.if-archive.org/
http://www.ifarchive.org/


Appendix B: Index 20

Index

This is some kind of general index, so don’t wonder if you find persons, concepts, keywords
and names all mixed up here.

The index is aimed to be complete regarding topics, not complete regarding references.
Therefore, not every occurence of e.g. “TADS” in the text is referenced here, only those
occurences that put TADS in the context of developing an authoring system (and e.g. not
the mentioning of TADS in the preface).

3
3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

A
Artificial Intelligence (AI) . . . . . . . . . . . . . . . . . . . . 4
assembler/machine code . . . . . . . . . . . . . . . . . . . . . . 6

B
BASIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4, 6
Bison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

C
C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5, 6
C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 6
C/C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4, 5, 6
Cloak Of Darkness . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Curses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
customizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
customizing (the library) . . . . . . . . . . . . . . . . . . . . . 7

D
default-behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Delphi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

E
elegance (lack of) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Eve, Eric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

F
FDL, GNU Free Documentation License . . . . . . 11
Firth, Roger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 10
Forth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 6
Fortran . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 6

G
gcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
gimmick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Glk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 5
Glulx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 6

H
HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 8

I
I/O-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Inform . . . . . . . . . . . . . . . . . . . . . . . . 2, 3, 4, 5, 7, 8, 9

J
Java . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4, 6

L
ladder-logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 7
Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Lisp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 5
Logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

M
machine code/assembler . . . . . . . . . . . . . . . . . . . . . . 6
MacOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
manuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

N
Nelson, Graham . . . . . . . . . . . . . . . . . . . . . 1, 7, 8, 10
rec.arts.int-fiction . . . . . . . . . . . . . . . 1, 2, 7, 8, 9, 10
NPC (non-player-character) . . . . . . . . . . . . . . . . 4, 7

P
parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6, 7
Pascal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4
PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Perl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4, 6
Plotkin, Andrew . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 10
Postscript (PS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3, 4

R
Roberts, Michael J. . . . . . . . . . . . . . . . . . . . . . 1, 8, 10

news:rec.arts.int-fiction


Appendix B: Index 21

S
Samwyse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 10
Shiovitz, Dan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1, 10
STDIO.H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

T
T3 Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 6
TADS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2, 3, 4, 8, 9
TADS 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

U
Unix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

V

Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Virtual Machine (Java) . . . . . . . . . . . . . . . . . . . . . . . 6
Virtual Machine (TADS 3) . . . . . . . . . . . . . . . . . . . . 6
Virtual Machine (Z-CODE) . . . . . . . . . . . . . . . . . . . 6
Virtual Reality (VR) . . . . . . . . . . . . . . . . . . . . . . . . . 4
VR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

W
Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
world-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4, 7

X
XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Z
Z-CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

What stuff I used

Created using GNU Make 3.80, Copyright (C) 2002 Free Software Foundation, Inc.;
pdfTEX (Web2C 7.4.5) 3.14159-1.10b, kpathsea version 3.4.5, Copyright (C) 1997-2003
Han The Thanh; Kpathsea is copyright (C) 1997-2003 Free Software Foundation, Inc.;
TEX (Web2C 7.4.5) 3.14159, kpathsea version 3.4.5, Copyright (C) 1997-2003 D.E. Knuth;
Kpathsea is copyright (C) 1997-2003 Free Software Foundation, Inc.; dvips(k) 5.92b,
kpathsea version 3.4.5, Copyright (C) 2001 Radical Eye Software.; makeinfo (GNU
texinfo) 4.7, Copyright (C) 2004 Free Software Foundation, Inc.

Created Sun Nov 27 21:13:41 CET 2005 using a Mobile Intel R© Pentium R© 4 running
Ubuntu GNU/Linux R© 5.10 (kernel 2.6.12-10-686).


	Preface
	The Advice
	The Guidelines
	Set up your goals
	Learn what's around
	Design a language
	Develop a compiler
	Develop a library
	Develop a parser
	Develop a world model
	Think about customizing

	Write a game or two
	Write manuals
	Beta test your work
	Publish and monitor
	Check for success
	Feed back

	Some final notes
	Conclusion
	Credits
	Getting in touch

	Copying This Manual
	GNU Free Documentation License
	ADDENDUM: How to use this License for your documents


	Table of links
	Index

